Part Number Hot Search : 
HD6417 1N474 80286 2SC49 74AC2 ERIES GPF1604 V120ZS4
Product Description
Full Text Search
 

To Download SGW20N60 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SGP20N60 SGB20N60, SGW20N60
Fast S-IGBT in NPT-technology
* 75% lower Eoff compared to previous generation combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability
C
G
E
Type SGP20N60 SGB20N60 SGW20N60 Maximum Ratings Parameter
VCE 600V
IC 20A
VCE(sat) 2.4V
Tj 150C
Package TO-220AB TO-263AB TO-247AC
Ordering Code Q67041-A4712-A2 Q67041-A4712-A4 Q67040-S4236
Symbol VCE IC
Value 600 40 20
Unit V A
Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Gate-emitter voltage Avalanche energy, single pulse IC = 20 A, VCC = 50 V, RGE = 25 , start at Tj = 25C Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature
1)
ICpul s VGE EAS
80 80 20 115 V mJ
tSC Ptot Tj , Tstg
10 179 -55...+150
s W C
VGE = 15V, VCC 600V, Tj 150C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Mar-00
SGP20N60 SGB20N60, SGW20N60
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Thermal resistance, junction - ambient Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 20 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 70 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Ciss Coss Crss QGate LE V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =2 0 A V G E = 15 V T O - 24 7A C F eh le r ! V erw e is qu el le ko n n t e n i ch t g ef u n d e n w erd en. IC(SC) V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 15 0 C 7 13 nH 1100 107 63 100 1320 128 76 130 nC pF IGES gfs V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 20 A 14 40 2500 100 nA S 1.7 3 2 2.4 4 2.4 2.9 5 A 600 V Symbol Conditions Value min. Typ. max. Unit RthJA TO-247AC 40 RthJC 0.7 K/W Symbol Conditions Max. Value Unit
Short circuit collector current
1)
-
200
-
A
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Mar-00
SGP20N60 SGB20N60, SGW20N60
Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 2 0 A, V G E = 0/ 15 V , R G = 16 , Energy losses include "tail" and diode reverse recovery. 36 30 225 54 0.44 0.33 0.77 46 36 270 65 0.53 0.43 0.96 mJ ns Symbol Conditions Value min. typ. max. Unit
Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 20 A , V G E = 0/ 15 V , R G = 16 Energy losses include "tail" and diode reverse recovery. 36 30 250 63 0.67 0.49 1.12 46 36 300 76 0.81 0.64 1.45 mJ ns Symbol Conditions Value min. typ. max. Unit
3
Mar-00
SGP20N60 SGB20N60, SGW20N60
110A 100A 90A
100A
Ic
tp=4s 15s
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
80A 70A 60A 50A 40A 30A 20A 10A 0A 10Hz TC=110C TC=80C
10A 50s
200s 1A 1ms
Ic
0.1A 1V 10V 100V
DC
100Hz
1kHz
10kHz
100kHz
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C)
200W 180W 160W
50A
40A
120W 100W 80W 60W 40W 20W 0W 25C
IC, COLLECTOR CURRENT
50C 75C 100C 125C
Ptot, POWER DISSIPATION
140W
30A
20A
10A
0A 25C
50C
75C
100C
125C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C)
4
Mar-00
SGP20N60 SGB20N60, SGW20N60
60A 60A
50A
50A VGE=20V 15V 13V 11V 9V 7V 5V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
40A
40A
VGE=20V 15V 13V 11V 9V 7V 5V
30A
30A
20A
20A
10A
10A
0A 0V
1V
2V
3V
4V
5V
0A 0V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C)
60A 50A 40A 30A 20A 10A 0A 0V
Tj=+25C -55C +150C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
70A
4.0V
3.5V
IC = 40A
3.0V
IC, COLLECTOR CURRENT
2.5V
IC = 20A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V
-50C
0C
50C
100C
150C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Mar-00
SGP20N60 SGB20N60, SGW20N60
td(off)
td(off)
t, SWITCHING TIMES
100ns
tf
t, SWITCHING TIMES
100ns
tf
td(on) tr
td(on) tr
10ns 10A 20A 30A 40A
10ns 0
10
20
30
40
50
60
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 16)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 20A)
5.5V
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max.
td(off)
t, SWITCHING TIMES
100ns
tf tr td(on)
min.
10ns 0C
50C
100C
150C
-50C
0C
50C
100C
150C
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA)
6
Mar-00
SGP20N60 SGB20N60, SGW20N60
3.0mJ
*) Eon and Ets include losses due to diode recovery.
3.0mJ
Ets*
*) Eon and Ets include losses due to diode recovery.
2.5mJ
2.5mJ
E, SWITCHING ENERGY LOSSES
2.0mJ Eon* 1.5mJ Eoff
E, SWITCHING ENERGY LOSSES
2.0mJ Ets* 1.5mJ
1.0mJ
1.0mJ
Eon* Eoff
0.5mJ
0.5mJ
0.0mJ 0A
10A
20A
30A
40A
50A
0.0mJ 0
10
20
30
40
50
60
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 16)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 20A)
1.6mJ
ZthJC, TRANSIENT THERMAL IMPEDANCE
1.4mJ
*) Eon and Ets include losses due to diode recovery.
10 K/W D=0.5 0.2 10 K/W 0.1 0.05 0.02 10 K/W 0.01
-2 -1
0
E, SWITCHING ENERGY LOSSES
1.2mJ 1.0mJ 0.8mJ
Ets*
Eon* 0.6mJ Eoff 0.4mJ 0.2mJ 0.0mJ 0C
R,(1/W) 0.1882 0.3214 0.1512 0.0392
R1
, (s)= 0.1137 2.24*10-2 7.86*10-4 9.41*10-5
R2
10 K/W single pulse
-3
C 1= 1/R 1
C 2= 2/R 2
50C
100C
150C
10 K/W 1s
-4
10s
100s
1ms
10ms 100ms
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6)
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
7
Mar-00
SGP20N60 SGB20N60, SGW20N60
25V
Ciss
20V
1nF
VGE, GATE-EMITTER VOLTAGE
15V 120V 480V
C, CAPACITANCE
10V
100pF
Coss
5V
Crss
0V 0nC
25nC
50nC
75nC 100nC 125nC
10pF 0V
10V
20V
30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 20A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 s
350A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
300A 250A 200A 150A 100A 50A 0A 10V
tsc, SHORT CIRCUIT WITHSTAND TIME
20 s
15 s
10 s
5 s
0 s 10V
11V
12V
13V
14V
15V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C)
8
Mar-00
SGP20N60 SGB20N60, SGW20N60
TO-220AB
symbol min A B C D E F G H K L M N P T 9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95 dimensions [mm] max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min 0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374 [inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520
2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72
0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071
TO-263AB (D2Pak)
symbol min A B C D E F G H K L M N P Q R S T U V W X Y Z 9.80 0.70 1.00 1.03 [mm]
dimensions [inch] max 10.20 1.30 1.60 1.07 min 0.3858 0.0276 0.0394 0.0406 max 0.4016 0.0512 0.0630 0.0421
2.54 typ. 0.65 0.85
0.1 typ. 0.0256 0.0335
5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50
0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984
15 typ. 0.00 4.20 0.20 5.20
0.5906 typ. 0.0000 0.1654 0.0079 0.2047
8 max 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 3.00 0.60
8 max 0.0945 0.0157 0.1181 0.0236
0.4252 0.0453 0.2453 0.1811 0.3701 0.6358
9
Mar-00
SGP20N60 SGB20N60, SGW20N60
TO-247AC
symbol min A B C D E F G H K L M N P Q 6.12 4.78 2.29 1.78 1.09 1.73 2.67 [mm]
dimensions [inch] max 5.28 2.51 2.29 1.32 2.06 3.18 min 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252
0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930
0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941
3.61 6.22
0.1421 0.2409 0.2449
10
Mar-00
SGP20N60 SGB20N60, SGW20N60
1
Tj (t) p(t)
2
r2
r1
n
rn
r1
r2
rn
TC
Figure D. Thermal equivalent circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
11
Mar-00
SGP20N60 SGB20N60, SGW20N60
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Mar-00


▲Up To Search▲   

 
Price & Availability of SGW20N60

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X